Great Oracy Exhibition 2025

Mathematical oracy: what do we mean?

Jane Hawkins
Associate Deputy Director
Secondary
NCETM

Headline Sponsor:

Synopsis

Learn how the NCETM's Maths Hubs programme is developing teachers' understanding of the significance of talk in the maths classroom. In this session, Jane will share how oracy sits at the heart of a mastery approach to mathematics - which seeks to enhance all students' confidence, enjoyment and progression within the subject.

Hidden slide

Intro to Stein (10 mins)

Anticipating task (10 mins)

Plashett video (10 mins)

NCETM exemplification (5 mins)

The NCETM

The National Centre for Excellence in the Teaching of Mathematics is a DfE contract to offer professional development to all teachers of maths in state maintained schools in England. This offer is provided by the Maths Hubs programme.

Every school in England is automatically part of their local Maths Hub. Maths Hubs provide locally tailored, and bespoke support to schools seeking to improve the maths outcomes for their pupils.

The NCETM and Voice 21

Research and Innovation Work Groups

- How does Oracy relate to maths?
- What is the impact of specific oracy strategies on disadvantaged pupils' understanding of mathematics?
- How can an expert LLME's advocacy for oracy with their peer LLMEs have an impact on the hub's provision in this area?

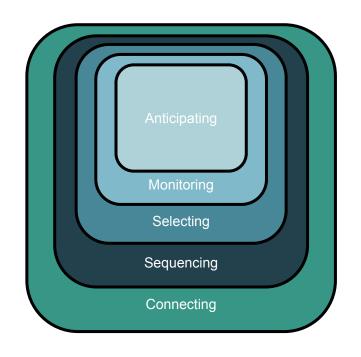
Orchestrating Productive Mathematical Discussions

Mathematical Thinking and Learning, 10: 313-340, 2008 Copyright © Taylor & Francis Group, LLC

ISSN 1098-6065 print / 1532-7833 online DOI: 10.1080/10986060802229675

ARTICLES

Orchestrating Productive Mathematical Discussions: Five Practices for Helping Teachers Move Beyond Show and Tell


> Mary Kay Stein University of Pittsburgh

Randi A. Engle University of California, Berkeley

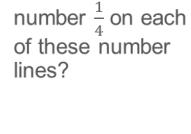
> Margaret S. Smith University of Pittsburgh

Elizabeth K. Hughes University of Northern Iowa

Anticipating likely student responses to cognitively demanding mathematical tasks

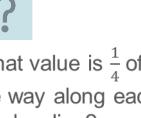
Monitoring students' responses to the tasks during the explore phase

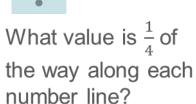
Selecting particular students to present their mathematical responses during the discuss and-summarise phase


Purposefully **sequencing** the student responses that will be displayed

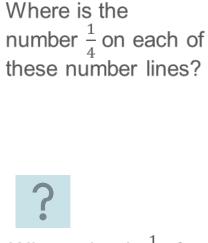
Helping the class make mathematical connections between different students' responses and between students' responses and the key ideas.

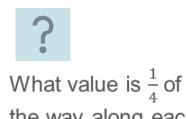
Anticipating learner responses




Checkpoint 2: Where is one-quarter?

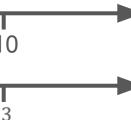
Where is the

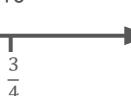




Checkpoint 2: Where is one-quarter? (animated solutions)

the way along each number line?





Checkpoint 16: Greater fractions

How could you decide whether the first (red) or the second (blue) fraction is the greater in each pair?

a)
$$\frac{11}{17}$$
 or $\frac{13}{17}$

b)
$$\frac{11}{17}$$
 or $\frac{11}{19}$

c)
$$\frac{11}{44}$$
 or $\frac{101}{400}$

d)
$$\frac{11}{37238}$$
 or $\frac{1}{5}$

Find a fraction that has a value in between the two fractions in each pair.

Plashett - teacher voicing the 5 practices

Plashett

- What strikes you about this clip?
- What are the particular pedagogical practices you noticed? What principle(s) or feature(s) do they exemplify?
- Are there other classroom practices you've seen that enable the same principle(s) or feature(s)?

NCETM - Oracy in Mathematics

Oracy in mathematics

Oracy exemplified in The Essence of Mathematics Teaching for Mastery¹

Oracy in maths

Oracy in mathematics involves authentic listening, articulation and development of mathematical thinking. It is an essential skill that supports learning by drawing attention to mathematical structure and enabling all pupils to make connections.

How does oracy relate to maths?

Communication takes many forms and can serve many purposes. Beyond a convention, talking, listening and communication in mathematics are fundamental to enabling thinking, establishing meaning, and developing a deep understanding of key mathematical ideas.

"Oracy in mathematics involves authentic listening, articulation and development of mathematical thinking. It is an essential skill that supports learning by drawing attention to mathematical structure and enabling all pupils to make connections." (NCETM 2024)

Underpinning principles

Mathematics teaching for mastery assumes everyone can learn and enjoy mathematics.

Securing greater equity in education is everyone's responsibility. Oracy is a powerful tool teachers can use to create more equitable classroom experiences. Teachers should ensure that all pupils can access the learning and have sufficient

Mathematical I developed suc fully as learners connections. Oracy in the maths classroom allows for pupils to develop their sense-making, both as they explore new ideas and as they present their current thinking.

ough al learning

ructing

e-making, nking.

Teachers continually develop their specialist knowledge for teaching mathematics, working collaboratively to refine and improve their teaching. Teachers' understanding of oracy is a key aspect of their specialist knowledge for teaching for mastery.

Teachers need to know how to create opportunities for pupil talk, be skilled in noticing significant pupil talk, and adapt lessons as a result.

The teacher listens to and extends purposeful dialogue in a coherent manner to develop learning.

both reinforce pupils' procedural fluency and

develop their conceptual understanding.

Lesson design Lesson design links to prior learning to ensure all Maths lessons reflect that sequenced learning is connected, for reasons which are can access the new learning and identifies made explicit and discussed during the lesson and understood by all. carefully-sequenced steps advance the Oracy in maths - disciplinary oracy secure understanding. son design. requires pupils to be fluent in the language of maths, and to be able to read meaning Examples, representation ing and talking carefully selected to expo into symbolic representations. mathematical concepts a nguage of connections, enabling pu knowledge of mathematics. It is recognised that practice is a vital part of Teachers design or adapt tasks which stimulate talk that harnesses learning and learning, but the practice must be designed to deepens understanding. As part of practice, pupils should have opportunities to

verbalise their thinking and justify how and why.

In the classroom

In a typical lesson, the teacher leads

back-and-forth interaction short tasks, explanation, discussion, enabling pur apply their knowledge to

Use of precise mathema pupils to communicate thinking effectively. The teacher skilfully manages the discourse to address a clear learning point.

Based on what they hear pupils say, and drawing on their own specialist knowledge, they guide pupils' focus and support the building of concepts in a coherent manner. ist knowledge, rent manner. -solving and ers' ideas, asking

ly plan for the Il vocabulary to

shared ecause

If a pupil fails to grasp a concept or procedure, this is identified quickly, and gaps in understanding are addressed systematically to prevent them falling behind. plan teaching to build on pupils' current conceptions of maths as the lesson progresses.

Teachers design opportunities for pupils to communicate and to listen to what is This in-the-moment formative assessment directly informs teachers' decisions c to move the learning forward to the intended learning point.

